Preparation of CO₂ Absorbent by Spray Pyrolysis

Ki-Hyouk Choi, Yozo Korai, and Isao Mochida*

Institutes for Materials Chemistry and Engineering, Kyushu University, Kasuga, Fukuoka 816-8580

(Received June 4, 2003; CL-030499)

 Li_2ZrO_3 particles were prepared by spray pyrolysis and solid state reaction to compare their CO_2 absorption capacity and rate. The former method provided much higher CO_2 absorption capacity and rate than those by the latter. Spherical particles of rather small and uniform size allow the faster diffusion of Li to the surface for higher CO_2 absorption capacity and regeneration of absorption through CO_2 recovery.

 CO_2 abatement to protect the global ecosystem has been urgently appealed because of global warming by CO_2 . Currently, waste CO_2 from the combustion of CH_4 is attempted to react with the fuel above $500\,^{\circ}C$ to recover the waste heat. For this, high temperature CO_2 must be separated from the flue gas for the reaction with CH_4 .

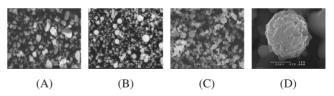
 Li_2ZrO_3 was proposed for a CO_2 absorbent at high temperature.^{2–5} It has been reported to absorb CO_2 at 450–550 °C and release it above 650 °C. Lithium ion is believed to diffuse to the surface to react with CO_2 into lithium carbonate and to release it through its thermal transformation into lithium metazirconate.

Spray pyrolysis has been known as a simple procedure to produce spherical particles of uniform size through the optimization. The product has uniform distribution of constituting elements within its particle because each particle produced from each droplets has the same concentration and thermal history. In contrast, traditional solid state method of mixing, calcining, milling, washing, post-calcining, milling, and sieving must result in the broad distribution in the composition, size, and shape of the final product.

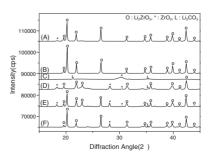
Thus, Li_2ZrO_3 was prepared by spray pyrolysis method (SP-Li₂ZrO₃) to evaluate its performances in high temperature CO₂ recovery, to be compared with those prepared by traditional solid state method (SS-Li₂ZrO₃).

Physically mixed ZrO₂ (Kyoritsu Ceramic Material Co., 0.2-8 um) and Li₂CO₃ (WAKO Chem.) in molar ratio of 1:1 by ball milling for 24h was calcined to prepare SS-Li₂ZrO₃ at 800 °C (-C8) and 1000 °C (-C10) for 8 h in air, followed by dry ball-milling for 6 h. Spray pyrolysis was performed by using ultrasonic nebulizer (1.7 MHz) as aerosol generator, quartz tube and filter. Two quartz reactors were connected serially to achieve the preheating at 200 °C and main decomposition at 750 °C. Air (3 L/min) was used as a carrier gas and total residence time in reactors was calculated as 16 s. Precursor solution for spray pyrolysis was prepared by dissolving Li₂CO₃ (WAKO Chem.) and ZrO(NO₃)₂·2H₂O (WAKO Chem.) into distilled water. Total concentration of lithium and zirconium in solution was 0.25 M. Spray pyrolyzed powder (SP-Li₂ZrO₃-P, as-prepared) was post-calcined at 800 °C (-C8) and 1000 °C (-C10) for 8h in air. SP-Li₂ZrO₃-T8 was prepared by post-calcining SP-Li₂ZrO₃-P at 800 °C without dwelling time.

CO₂ absorption capacity was examined by thermogravimetry (TG) and its rate was defined as weight increase (wt %) per


min. X-ray diffractometer (XRD), X-ray photoelectron spectrometer (XPS) and scanning electron microscope (SEM) were used to characterize Li_2ZrO_3 .

SP-Li₂ZrO₃-C8 and -C10 consisted of spherical particles of ca. 0.5–1 um, which were sintered together by the calcination, while the as-prepared product showed separated spherical particles as shown in Figure 1. In contrast, SS-Li₂ZrO₃-C8 and -C10, showed the aggregates of irregular particles with ca. 1-um diameter.


SS-Li₂ZrO₃-C8 and -C10 had almost the same diffraction patterns with the standard one. While SP-Li₂ZrO₃-P and SP-Li₂ZrO₃-T8 showed much broad peaks on diffractogram as shown in Figure 2, whereas calcined SP-Li₂ZrO₃-C8 and -C10 had the almost same patterns with those of solid state method. The peaks attributable to pure ZrO₂ were observed in SS- or SP-Li₂ZrO₃-C8 and -C10 indicating that Li₂ZrO₃ from spray pyrolysis must have some amount of free lithium, which is not bound to Li₂ZrO₃ structure. Very small peak attributable to Li₂CO₃ was found in the spray pyrolyzed products.

Electron binding energies of Zr $3d_{5/2}$ were 181.2 and $181.6\,\text{eV}$ for SS-Li₂ZrO₃-C10 and SP-Li₂ZrO₃-C10, respectively, although it was reported as $182.2\,\text{eV}^7$ for ZrO₂ meaning the presence of ZrO₂ which didn't interact with Li.

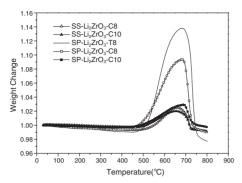

Figure 3 shows TG profiles of $\text{Li}_2\text{ZrO}_3\text{s}$ under CO_2 flow (200 mL/min) from 30 °C to 800 °C in the rate of 5 °C/min. SP-Li $_2\text{ZrO}_3$ -T8 showed the maximum weight increase of 13.8 wt % at 683 °C while SP-Li $_2\text{ZrO}_3$ -C8 and C10 reached

Figure 1. SEM images of (A) SS-Li₂ZrO₃-C8, (B) SP-Li₂ZrO₃-P, (C) and (D) SP-Li₂ZrO₃-C8.

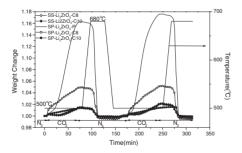

Figure 2. XRD data of (A) SS-Li₂ZrO₃-C8, (B) SS-Li₂ZrO₃-C10, (C) SP-Li₂ZrO₃-P, (D) SP-Li₂ZrO₃-T8*, (E) SP-Li₂ZrO₃-C8, (F) SP-Li₂ZrO₃-C10. *SP-Li₂ZrO₃-P was pretreated in air at 800 °C for 0 min.

Figure 3. TG Profiles of Li_2ZrO_3 under CO_2 (200 mL/min) flow from 30 to 800 °C in the rate of 5 °C/min.

those to 9.4 and 2.9 wt % at 683 and 688 °C, respectively. SS-Li₂ZrO₃-C8 and -C10 showed much lower weight increase of 3.2 wt % at 663 °C and 2.3 wt % at 658 °C, respectively, than the spray pyrolyzed Li₂ZrO₃.

In order to evaluate the CO₂ absorption capacity and regenerability, Li₂ZrO₃ samples were exposed to CO₂ (200 mL/min) at $500\,^{\circ}\text{C}$ for 1 h and then to N_2 ($200\,\text{mL/min}$) at $680\,^{\circ}\text{C}$ for 30 min. Absorption and regeneration were repeated twice. Li₂ZrO₃ was heated to 800 °C in N₂ flow (200 mL/min) before the CO₂ absorption to remove adsorbed CO₂ and H₂O although their amounts were negligible. As shown in Figure 4, CO₂ absorption was not saturated within 1 h at this temperature. SP-Li₂ZrO₃-P showed much larger CO₂ absorption capacity of about 16 wt % and absorption rate of 0.0041 wt %/min, than the other Li₂ZrO₃s. SP-Li₂ZrO₃-C8 gave also larger CO₂ absorption capacity of about 5 wt % and absorption rate of 0.0010 wt %/min. In contrast, maximum amounts of CO₂ absorption of SP-Li₂ZrO₃-C10, SS-Li₂ZrO₃-C8, and SP-Li₂ZrO₃-C10 were only about 1.5, 2.1, 2.1 wt %, respectively, although SP-Li₂ZrO₃-C10 showed much faster absorption than SS-Li₂ZrO₃-C8 and -C10. CO₂ absorption capability of such

Figure 4. TG Profiles of Li_2ZrO_3 under $\text{CO}_2(200\,\text{mL/min})$ flow at $500\,^{\circ}\text{C}$ and N_2 ($200\,\text{mL/min}$) flow at $680\,^{\circ}\text{C}$. All Li_2ZrO_3 samples were pre-heated at $800\,^{\circ}\text{C}$ for $0\,\text{min}$.

 $\text{Li}_2\text{ZrO}_3\text{s}$ was completely regenerated by heating at 680 °C for 30 min. The second CO_2 absorption showed slightly higher capacity than those in the first absorption over all Li_2ZrO_3 .

Spray pyrolysis was confirmed to be an excellent preparation procedure of Li₂ZrO₃ powder as CO₂ absorbent. CO₂ absorption process is suggested to consist of diffusion of Li ion through Li₂ZrO₃ particle and reaction with CO₂ on the surface to form Li_2CO_3 . Thus, rate determining step was proposed as Li diffusion from the bulk to the surface.8 Hence, primary particle of smaller grain size is favorable to capture CO₂ faster than that of the larger size. As shown in Figure 1, the apparent secondary particle size of SP-Li₂ZrO₃ is not much different with that of the SS-Li₂ZrO₃. However, SP-Li₂ZrO₃ was consisted of very fine particles of ca. 10 nm as shown in Figure 1. Furthermore, XRD peaks of SP-Li₂ZrO₃ were broader than that of SS-Li₂ZrO₃. Higher calcination temperature (1000 °C) for SP-Li₂ZrO₃ reduces the CO₂ absorption capacity as shown in Figures 2 and 3 due to larger particle size and higher crystallinity. Structural defects distribution within particles of low crystallinity may be also favorable for diffusion of Li.8,5

It should be also noted that spray pyrolyzed Li_2ZrO_3 had some kinds of "free" Li, such as Li_2CO_3 , as indicated by XRD and XPS. Such "free" Li species appears to be amorphous or glassy solids since very small peak identified to Li_2CO_3 is on the diffractogram.

SP- and SS-Li₂ZrO₃ were successfully regenerated as shown in Figure 4. Absorption capacity was restored to their initial level

This work was financially supported by Ship & Ocean Foundation (SOF) of Japan.

References

- 1 S. Campanari, J. Power Sources, 112, 273 (2002).
- 2 T. Ohashi, K. Nakagawa, H. Ohzu, Y. Akasaka, and N. Tomimatsu, U. S. Patent 6271172 (2001).
- 3 K. Nakagawa and T. Ohashi, *J. Electrochem. Soc.*, **145**, 1344 (1998).
- 4 M. Kato, S. Yoshikawa, and K. Nakagawa, *J. Mater. Sci. Lett.*, **21**, 485 (2002).
- M. Kato and K. Nakagawa, J. Ceram. Soc. Jpn., 109, 911 (2001).
- 6 T. T. Kodas and M. J. Hampden-Smith, "Aerosol Processing of Materials," Wiley-VCH, New York (1999), p 480.
- 7 D. Briggs and M. P. Seah, "Practical Surface Analysis," Wiley, New York (1990), Vol. 1, p 611.
- J.-I. Ida and Y. S. Lin, Environ. Sci. Technol., 37, 1999 (2003).
- 9 A. R. West, "Solid State Chemistry and Its Applications," John Wiley & Sons, New York (1984), p 452.